Predicting the Challenges of Prenatal Microarray from the Postnatal Experience

Abdul Noor, PhD

Clinical Cytogenetic Fellow (CCMG)
The Hospital for Sick Children
Toronto, ON
Microarray Service at SickKids
Annual Microarray Test Volumes

- **Agilent 44K**
- **OGT 180K**

Data categories:
- **Sickkids**
- **Out of Province**
- **MOH**

Time periods:
- 05/06
- 06/07
- 07/08
- 08/09
- 09/10
- 10/11
- 11/12
- 12/13
Interpretation of CNVs

- Pathogenic
- Likely Pathogenic
- Uncertain Clinical Significance
- VUS
 - Del <200 kb
 - Dup <500 kb
- Benign

To be reported

Not Reported
Diagnostic Yield

- Pathogenic = 10%
- Variants of Uncertain Significance = 16%

- Pathogenic = 9%
- Variants of Uncertain Significance = 14%
Challenging Cases
Challenging Case

- Neuropsychiatric Risk Loci
- Insufficient published data
- Large CNVs of Unknown Clinical Significance
- X-linked Loci

- Small CNVs
- ? Involve Exonic Sequences
- Mosaic CNVs
- ? Structural Chromosomal abnormities
Neuropsychiatric Risk Loci

<table>
<thead>
<tr>
<th>CNV</th>
<th>Initial Identification</th>
<th>Subsequent neurodevelopmental associations</th>
<th>Other non-behavioural phenotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>del3q29</td>
<td>MR (Rossi et al., 2001)</td>
<td>ASD (Willatt et al., 2005); schizophrenia (Mulle et al., 2010) BPD (Bailer et al., 2002)</td>
<td>Eye abnormalities (Tyshchenko et al., 2009); cardiac defect (Li et al., 2009)</td>
</tr>
<tr>
<td>del7q31</td>
<td>ASD and language disorders (IMGSAC, 2001)</td>
<td>Speech and language development (Marshall et al., 2008); TS (Sundaram et al., 2010)</td>
<td>Triphalangeal thumb and polysyndactyly phenotype (Kloppoki et al., 2008)</td>
</tr>
<tr>
<td>dup7q36.3</td>
<td>ID (Tyson et al., 2005)</td>
<td>Schizophrenia (Kirov et al., 2009a, b)</td>
<td></td>
</tr>
<tr>
<td>dup15q11–q13</td>
<td>Autism (Gillberg et al., 1991)</td>
<td>IGE (Bundey et al., 1994); developmental delay (Mohandas et al., 1999); schizophrenia (Kirov et al., 2008; Ingsom et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>del15q11.2</td>
<td>ID, ADHD (Murthy et al., 2007)</td>
<td>Schizophrenia (Stefansson et al., 2008; ISC, 2008); ASD (Doornbos et al., 2009); IGE (de Kovel et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>del15q13.3</td>
<td>ID, seizures (Sharp et al., 2008)</td>
<td>Schizophrenia (Stefansson et al., 2008; ISC, 2008); ASD (Muller et al., 2009); IGE (Helbig et al., 2009); BPD (Miller et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>dup16p11.2</td>
<td>Autism (Weiss et al., 2008)</td>
<td>Schizophrenia (Walsh et al., 2008; McCarthy et al., 2009); ADHD, microcephaly (Shinawi et al., 2010)</td>
<td>Syringomyelia (Schaaf et al., 2011)</td>
</tr>
<tr>
<td>del16p11.2</td>
<td>Cardiac defects and unilateral multiple renal cysts (Hernando et al., 2002)</td>
<td>Mild MR (Chebranian et al., 2007); Autism (Weiss et al., 2008; Kumar et al., 2008)</td>
<td>Flat facies, hypotonia, short stature (Ballif et al., 2007a, b); obesity (Walters et al., 2010)</td>
</tr>
<tr>
<td>del16p13.1</td>
<td>ID (Ullmann et al., 2007)</td>
<td>IGE, microcephaly (Hannes et al., 2009); schizophrenia (Ingason et al., 2009); IGE (de Kovel et al., 2010)</td>
<td>Congenital anomalies (Hannes et al., 2009)</td>
</tr>
<tr>
<td>dup16p13.1</td>
<td>ASD (Ullmann et al., 2007)</td>
<td>MR (Hannes et al., 2009); schizophrenia (Ingason et al., 2009)</td>
<td></td>
</tr>
</tbody>
</table>

Variable phenotype, penetrance and expressivity.
Insufficient Published Data

• 77 Kb deletion, Xq13.3, exonic deletion of KIAA2022. In one published report disruption of KIAA2022 gene has been reported in two related males with intellectual disability.

• 191 Kb deletion, 15q26.1, four RefSeq genes including CHD2. Disruption of CHD2 gene by a de novo translocation in one patient (Kulkarni et al, 2008).

Clinical significance not established.
Insufficient Published Data

KIAA2022
- Cantagrel et al, 2004
- Van Maldergem et al, 2013
- Pathogenic

CHD2
- Kulkarni et al, 2008
- Carvill et al, 2013
- Suls et al, 2013
- Courage et al, 2014
- Chénier et al, 2014
- Pathogenic
Large CNVs of Unknown Clinical Significance

- 1.8 Mb deletion, 11q13.4. Involves 32 RefSeq genes, 05 OMIM Morbid Map genes.

Size and number of genes suggest to be Pathogenic
No published evidence
X-linked Loci

- DMD deletions in females
- 6.708 Mb deletion, Xq27.3-q28, 39 RefSeq genes, 03 OMIM Morbid Map genes FMR1, FMR2 and IDS.

Unpredictable phenotype in females due to X Chromosome inactivation pattern and location of CNV
Very Small CNVs

- 9 Kb deletion, 17p13.3, Exons10-11, PAFAH1B1 (LIS1).

Confirmation by other methods is required.
81Kb intragenic deletion, OMIM Morbid Map gene AUTS2. Exon 4 is deleted?

Confirmation by other molecular methods is required
Mosaic CNVs

- Trisomy 13, 15, 18, X, Y

- Mosaic Deletions and Duplications of Large Segments
 - 15 Mb del at 20q11.21-q13.12, 10 Mb dup at 6q11.1-q13

G-banding and FISH testing to determine the level of mosaicism
Structural Chromosomal Abnormalities

- 32 Mb terminal deletion, Xp22.33-p21.1

G-banding, 45,X, dic(X;21)(p21.1;p11.2)
Reporting Challenging Cases

Interpretation
- Clinical correlation
- Parental testing
- Internal database

Technical
- qPCR
- FISH
- G-banding
Considerations for Prenatal Microarray

Genetic Counseling
- Interpretation
 - Neuropsychiatric Risk Loci
 - Insufficient published data
 - Large CNVs of Unknown Clinical Significance
 - X-linked Loci

Technical
- Parental Samples
- Streamlined Follow up Tests
 - ? False Positive/Small CNVs
 - ? Involve Exonic Sequences
 - Mosaic CNVs
 - ? Structural Chromosomal abnormalities

Cultured Cells for Follow up Testing
Acknowledgements

• Dr. James Stavropoulos (SickKids)
• Dr. Mary Shago (SickKids)
• Dr. Mary Ann George (SickKids)
• Dr. Elena Kolomietz (MSH)
• Dr. Kathy Chun (NYGH)